Chapter 1

Basics of Geometry

Section 4

Angles and Their Measures

GOAL 1: Using Angle Postulates

An _angle_consists of two different rays that have the same initial point. The rays are the __sides__ of the angle. The initial point is the ___vertex___ of the angle.

The angle that has side $\quad \overrightarrow{A B} _$and $\quad{ }_{\mathrm{AC}}$ is denoted by __ $<C A B _$, __ $<B A C _$, or __A __. The point __A__ is the vertex of the angle.

Example 1: Naming Angles

Name the angles in the figure.

```
<PQS (<SQP)
<SQR (<RQS)
<PQR (<RQP)
```


*when there is more than one angle - you CANNOT name the angle with the vertex

The \qquad measure_ of $<\mathrm{A}$ is denoted by \qquad m<A \qquad .
The measure of an angles can be approximated with a protractor, using units called degrees. For instance, <BAC has a measure of 50°, which can be written as

$$
m \angle B A C=50^{\circ}
$$

inside

Angles that have the same measure are called \qquad congruent angles \qquad .

For instance, <BAC and <DEF each have a measure of 50°, so they are congruent.

IMPORTANT NOTE:
MEASURES ARE EQUAL $m<B A C=m<D E F$

ANGLES ARE CONGRUENT

$<B A C \cong<D E F$

POSTULATE 3: Protractor Postulate

Consider a point A on one side of $\overleftrightarrow{O B}$. The rays of the form $\overrightarrow{O A}$ can be matched one to one with the real numbers from 0 to 180 .

The measure of $<A O B$ is equal to the absolute value of the difference between the real numbers for $\overrightarrow{O A}$ and OB.

A point is in the __interior__ of an angle if it is between points that lie on each side of the angle.

A point is in the __exterior__ of an angle if it is not on the angle or in its interior.

POSTULATE 4: Angle Addition Postulate

If P is in the interior of $<R S T$, then
__ $<$ RSP__+__PST__ =__RST__

Example 2: Calculating Angle Measures

Each eye of a horse wearing blinkers has an angle of vision that measures 100°. The angle of vision that is seen by both eyes measures 60°.

Find the angle of vision seen by the left eye alone.

$$
\begin{aligned}
& m<1+m<2=100 \\
& m<1+60=100 \\
& m<1=40^{*}
\end{aligned}
$$

GOAL 2: Classifying Angles

Angles are classified as \qquad acute__,_right \qquad , __obtuse \qquad , and __straight , according to their measures. Angles have measures greater than 0° and less than or equal to 180°.

Acute angle
$0^{\circ}<m \angle A<90^{\circ}$

Right angle
$m \angle A=90^{\circ}$

Obtuse angle
$90^{\circ}<m \angle A<180^{\circ}$

Straight angle
$m \angle A=180^{\circ}$

Example 3: Classifying Angles in a Coordinate Plane

Plot the points $L(-4,2), M(-1,-1), N(2,2), Q(4,-1)$ and $P(2,-4)$. Then measure and classify the following angles as acute, right, obtuse, or straight.
a. $<$ LIN
b. $<L M P$

c. $<\mathrm{NMO}$

d. $\angle L M Q$
obtuse

Two angles are __adjacent angles__ if they share a ___ side \qquad and _vertex_, but have no common ___interior points \qquad .

Example 4: Drawing Adjacent Angles

Use a protractor to draw two adjacent acute angles <RSP and <PST so that <RST is (a) acute and (b) obtuse.

