# Chapter 1 Basics of Geometry

# Section 4 Angles and Their Measures

# **GOAL 1: Using Angle Postulates**

An \_angle\_ consists of two different rays that have the same initial point. The rays are the \_\_sides\_\_ of the angle. The initial point is the \_\_\_vertex\_\_ of the angle.

The angle that has side \_\_AB\_\_ and \_\_AC\_\_ is denoted by \_\_<CAB\_\_, \_\_<BAC\_\_, or \_\_<A\_\_. The point \_\_A\_\_ is the vertex of the angle.



### **Example 1: Naming Angles**

Name the angles in the figure.



\*when there is more than one angle – you CANNOT name the angle with the vertex

The \_\_\_\_measure\_ of <A is denoted by \_\_\_m<A\_\_\_. The measure of an angles can be approximated with a protractor, using units called degrees. For instance, <BAC has a measure of 50°, which can be written as

$$m < BAC = 50^{\circ}$$

<u>outside</u>



Angles that have the same measure are called \_\_\_\_congruent angles\_\_\_\_.

For instance, <BAC and <DEF each have a measure of 50°, so they are congruent.

### **IMPORTANT NOTE:**

**MEASURES ARE EQUAL** 

m<BAC = m<DEF

**ANGLES ARE CONGRUENT** 

<BAC  $\cong$  <DEF

### **POSTULATE 3: Protractor Postulate**

Consider a point A on one side of OB.

The rays of the form  $\overrightarrow{OA}$  can be matched one to one with the real numbers from 0 to 180.

The measure of <AOB is equal to the absolute value of the difference between the real numbers for OA and OB.



A point is in the \_\_interior\_\_ of an angle if it is between points that lie on each side of the angle.

A point is in the \_\_exterior\_\_ of an angle if it is not on the angle or in its interior.



### **POSTULATE 4: Angle Addition Postulate**

If P is in the interior of <RST, then



# Example 2: Calculating Angle Measures

Each eye of a horse wearing blinkers has an angle of vision that measures 100°. The angle of vision that is seen by both eyes measures 60°.

Find the angle of vision seen by the left eye alone.



### **GOAL 2: Classifying Angles**

Angles are classified as \_\_acute\_\_, \_\_right\_\_, \_\_obtuse\_\_, and \_\_straight\_\_, according to their measures. Angles have measures greater than 0° and less than or equal to 180°.



### Example 3: Classifying Angles in a Coordinate Plane

Plot the points L(-4, 2), M(-1, -1), N(2, 2), Q(4, -1) and P(2, -4). Then measure and classify the following angles as acute, right, obtuse, or straight.





Two angles are \_\_adjacent angles\_\_ if they share a \_\_\_\_side\_\_\_ and \_vertex\_, but have no common \_\_\_interior points\_\_\_\_.



# **Example 4: Drawing Adjacent Angles**

Use a protractor to draw two adjacent acute angles <RSP and <PST so that <RST is (a) acute and (b) obtuse.

